

ENERGIE.PT

A ÚLTIMA GERAÇÃO DE BOMBAS DE CALOR AR / ÁGUA

COM REFRIGERANTE NATURAL R290

Recorre a um refrigerante natural com reduzido potencial de aquecimento global

Possuí níveis de ruído reduzido, quase impercetível a poucos metros de distância quando em funcionamento.

O equipamento consegue atingir temperaturas superiores a 70°C o que o torna na solução ideal para substituição de caldeira.

A classe de eficiência A+++ e SCOP próximo de 5 conferem ao equipamento uma das maiores eficiências do mercado.

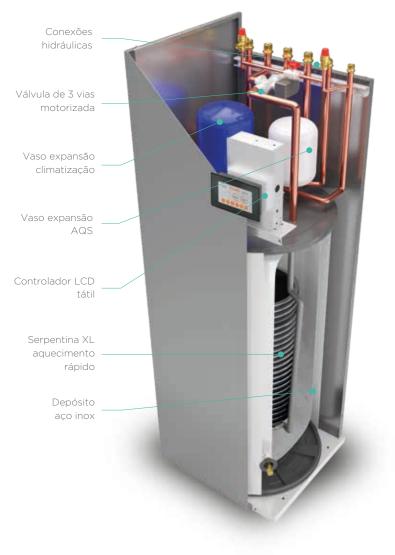
Não existe o manuseamento de gases fluorados, a instalação é 100% hidráulica.

Apresenta elevada performance independentemente da aplicação: aquecimento, arrefecimento ou produção de AQS.

O equipamento tem um exterior revestido em polímero ABS que lhe confere proteção contra a corrosão.

CONTROLADOR TÁTIL E INTUITIVO

CLIMATIZAÇÃO E PRODUÇÃO DE AQS


- 1 ON/OFF
- 2. Modo de funcionamento
- 3. Temperatura
- 4. Setpoint
- 5. Bloqueio teclado
- 6 Meni

COMPATIBILIDADE COM A GAMA THERMOBOX

A INVERTER HT é compatível com a gama de equipamentos Aquapura THERMOBOX! Estes modelos que pertencem à família de equipamentos ALL-IN-ONE da ENERGIE, constituída somente por 2 unidades, uma interior e outra exterior, de instalação 100% hidráulica, todos os componentes da instalação encontram-se integrados na unidade interior do equipamento, tornando esta solução versátil e compacta. Ideal para moradias ou habitações multi-familiares.

NOVA SOLUÇÃO DE CLIMATIZAÇÃO

Basta possuir uma infraestrutura de terminais a água, nomeadamente radiadores, sistemas radiantes invisíveis ou ventilo-convectores para usufruir desta nova solução de climatização e produção de Água Quente Sanitária.

PRINCÍPIO DE FUNCIONAMENTO

O fluido refrigerante é bombeado para um permutador de calor externo (evaporador). Aqui o fluido, com a ajuda de um ventilador, absorve energia do ambiente devido ao diferencial de temperatura conseguido no exterior, ocorrendo a mudança de fase para o estado gasoso.

Posteriormente é aspirado pela parte mecânica do sistema, o compressor. Aqui é comprimido, a pressão eleva-se e consequente-mente a temperatura do fluido aumenta, viaja até um segundo permutador de calor interno (condensador) e transfere o calor para a água presente no depósito. A consequente diminuição de temperatura provoca a mudança para o estado líquido. A pressão do fluido é reduzida devido a um estrangulamento que acontece na válvula de expansão e o processo recomeça.

AS BOMBAS DE CALOR INVERTER

DESTACAM-SE PELO SEU ALTO DESEMPENHO

As Bombas de Calor são preparadas para aquecimento e arrefecimento assim como aquecimento de águas sanitárias. Estas soluções destacam-se pela sua alta eficiência energética, o que as torna capaz de alcançar uma classificação energética até A+++ para o aquecimento. Destacam-se também pela sua capacidade de integração com outros sistemas de aquecimento e fácil instalação.

ALTO NÍVEL DE EFICIÊNCIA

PRODUÇÃO DE ÁGUAS QUENTES SANITÁRIAS

O calor proveniente do ambiente é a energia solar indirecta, armazenado na água, ar e solo. A Bomba de Calor vai retirar calor precisamente dessas fontes de calor para posteriormente utilizar na climatização do seu lar. As Bombas de Calor Ar/Água com tecnologia INVERTER de alta eficiência energética são uma solução moderna, eficiente e limpa que garantem o conforto do seu lar, respeitando sempre o meio ambiente.

É uma forma inteligente de utilizar os recursos da natureza de forma a melhorar a sua qualidade de vida. Ao adotar uma destas soluções estará a fazer um sério compromisso na questão da redução das emissões nocivas à nossa atmosfera, contribuindo assim para o equilíbrio natural do planeta. As Bombas de Calor Ar/Água com tecnologia INVERTER foram desenvolvidas para responder tanto às necessidades do uso doméstico como industrial, para soluções de Climatização e Águas Quentes Sanitárias (AQS).

CONSUMOS DE ENERGIA PRIMÁRIA

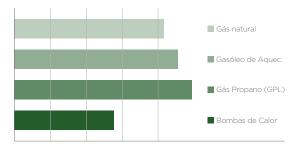
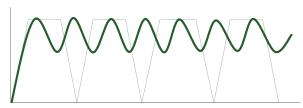



GRÁFICO DE CONSUMO ENERGÉTICO

CARACTERÍSTICAS CHAVE

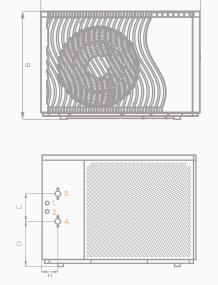
- A eficiência mais elevada do mercado
- Aquecimento e/ou Arrefecimento
- Manutenção reduzida e baixo ruído de operação
- Funcionamento com temperaturas exteriores até -25°C
- Construção com revestimento ABS resistente á corrosão
- Função Água Quente Sanitária

TECNOLOGIA DC INVERTER

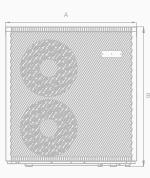
INVERTER vs TRADICIONAL

Período de Operação

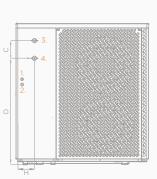
A tecnologia DC INVERTER diferencia-se de qualquer outra tecnologia existente no mercado por possuir compressor com capacidade de variar a frequência de funcionamento atendendo exatamente às necessidades de conforto na climatização da habitação. Obtém-se assim uma maior poupança no consumo de energia.

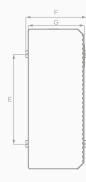

DADOS TÉCNICOS (Unidade Exterior)			INV. 8HT	INV. 12HT	INV. 14HT	INV. 14HT-T	INV. 22HT-T
Alimentação elétrica			230V~/50Hz	230V~/50Hz	230V~/50Hz	400V~/3F+N/50Hz	400V~/3F+N/50Hz
Potência fornecida Aquecimento (Nom/Máx) kW Arrefecimento (Nom/Máx)kW		() kW	8,95~10,30 12,30~14,50		14,21~16,70 14,21~16,70		22,00~25,47
		x)kW	5,98~8,51	10,14~11,60	9,71~11,61	9,71~11,61	16,04~17,16
Potência consumida	Potência consumida Aquecimento (Nom/Máx) kV		1,86~3,00	2,50~5,10	2,83~5,30	2,83~5,30	4,94~9,01
Arrefecimento (Nom/Máx)		x)kW	1,64~3,00	2,61~5,10	2,45~5,30	2,45~5,30	4,44~9,01
COP 1	Nominal		4,8	4.92	5,02	5,02	4,45
ERR ²	Nominal		3,65	3.88	3,96	3,96	3,61
Classe energética a 35°C ³			A+++	A+++	A+++	A+++	A+++
SCOP eficiência sazonal a 35°C ³			5,00	4,82	4,90	4,90	4,91
Classe energética a 55°C ³			A++	A++	A++	A++	A++
SCOP eficiência sazonal a 55°C ³		3,71	3,53	3,76	3,76	3.70	
Potência máxima consumida kW		kW	3,0	5,1	5,3	5,3	9,1
Corrente máx operação A		A	13,5	22	24,5	10,5	15,8
Refrigerante (R290) / CO ₂ Eq. kg/To		kg/Ton	0,5 / 0,0015	0,8 / 0,0020	0,85 / 0,0025	0,85 / 0,0025	1,3 / 0,004
Compressor			DC Inverter	DC Inverter	DC Inverter	DC Inverter	DC Inverter
Pressão sonora a 1m dB(A)		dB(A)	46	46	43	44	44
Potência sonora dB		dB	60	51	57	58	62
Conexões hidráulicas Pol.		Pol.	1"	1"	1"	1"	1"
Circulador			Integrado	Integrado	Integrado	Integrado	Integrado
Caudal água mínimo m³/h		m³/h	1	1,4	1,6	1,6	2,9
Perda de carga circuito hidráulico kPa		kPa	20	15	30	30	45
Dimensões (AxLxP)		(AxLxP)	795x1167x445	790x1167x420	928x1287x500	928x1287x500	1329x1247x540
Peso kg			80	120	160	160	202

¹ Temperatura ar (DB/WB) 7° C/6°C; Temperatura da água (entreda/saída) 30° C/35°C | ² Temperatura ar (DB/WB) 35° C/24°C; Temperatura da água (entrada/saída) 12° C/7°C | ³ De acordo com EN14825 e Regulamento Delegado (EU) Nº 812/2013


DADOS TÉCNICOS THERMOBOX AQS (Unidade Interior)			INVERTER 8HT		INVERTER 12HT		INVERTER 14HT 14HT-T		INVERTER 22HT-T
			200L	160L	200L	270L	200L	270L	270L
Tempo de aquecimento (Δt=35°C)	hh:mm	00:44	00:55	00:32	00:40	00:54	00:34	00:47	00:31
COP/SCOP ⁴		3,31	3,32	3,34	3,36	3,38	3,32	3,36	3,30
Perfil de consumo ⁴		L	L	L	L	XL	L	XL	XL
Eficiência energética ⁴	%	138	139	139	141	141	139	140	137
Quantidade de AQS disponível (40°C) 4	L	205	257	205	257	332	258	332	338
Classe energética ⁴		A+	A+	A+	A+	A+	A+	A+	A+
Temperatura máxima AQS	°C	60	60	60	60	60	60	60	60

 $^{^{\}mathbf{4}}$ A7/W Δt 35°C, de acordo com EN16147 e Regulamento Delegado (EU) Nº 812/2013


Equipamento: AQUAPURA INVERTER 8HT | 12HT | 14HT | 14HT-T Equipamento: AQUAPURA INVERTER 22HT-T



DIMENSÕES mm

22HT-T

1. Alimentação elétrica
Comunicação
7 Caída do água / ida

- 3. Saída de água / ida
- 4. Entrada de água / retorno
- А 1167 1167 1287 В 795 790 928 1329 С 229 239 238 155 D 985 339 331 363 Ε 830 830 975 800 F 445 420 500 540 G 428 400 458 503 Н 166 167 125 216 3 1" 1" 1" 1"

12HT

14HT | 14HT-T

8НТ

O presente folheto foi criado apenas para informar e não constitui uma oferta contratual para a ENERGIE EST Lda. a ENERGIE EST Lda. compilou o conteúdo deste folheto de acordo com o melhor dos seus conhecimentos. Não é dada qualquer garantia expressa ou implícita no que toca à totalidade, precisão, fiabilidade ou adequação para um determinado fim do seu conteúdo e dos produtos e serviços que apresenta. As especificações estão sujeitas a alterações sem aviso prévio. A ENERGIE EST Lda. rejeita explicitamente quaisquer danos diretos ou indiretos, no seu sentido mais amplo, resultantes ou relacionados com a utilização e/ou interpretação deste folheto. R4VO/2025

