

ENERGIE.PT

A ÚLTIMA GERAÇÃO DE BOMBAS DE CALOR AR / ÁGUA COM REFRIGERANTE NATURAL R290

Recorre a um refrigerante natural com reduzido potencial de aquecimento global

Possuí níveis de ruído reduzido, quase impercetível a poucos metros de distância quando

O equipamento consegue atingir o que o torna na solução ideal para substituição de caldeira.

A classe de eficiência A+++ confere ao equipamento uma das maiores eficiências do mercado.

Não existe o manuseamento é 100% hidráulica.

Apresenta elevada performance independentemente da aplicação: ou produção de AQS.

O equipamento tem um exterior

CONTROLADOR TÁTIL E INTUITIVO PRODUÇÃO DE AQS E CLIMATIZAÇÃO

PRINCÍPIO DE FUNCIONAMENTO

Existe um fluido refrigerante que é bombeado para um permutador de calor externo (evaporador). Neste ponto, o fluido absorve energia do ambiente graças ao diferencial de temperatura existente no exterior. Durante este processo, o fluido muda de estado e transforma-se em vapor. O fluido gasoso é então aspirado pela parte mecânica do sistema o compressor.

No compressor, o fluido é comprimido, o que faz aumentar a pressão e, consequentemente, a sua temperatura. De seguida, o fluido desloca-se até um segundo permutador de calor interno (condensador), onde transfere o calor acumulado para o sistema de aquecimento da habitação. À medida que arrefece naturalmente, o fluido retorna ao estado líquido. Por fim, a pressão do fluido é reduzida através de um estrangulamento na válvula de expansão, e o ciclo recomeça.

AS BOMBAS DE CALOR INVERTER

DESTACAM-SE PELO SEU ALTO DESEMPENHO

As Bombas de Calor são preparadas para aquecimento e arrefecimentoassim como aquecimento de águas sanitárias. Estas soluções destacam-se pela sua alta eficiência energética, o que as torna capaz de alcançar uma classificação energética até A+++ para o aquecimento. Destacam-se também pela sua capacidade de integração com outros sistemas de aquecimento e fácil instalação.

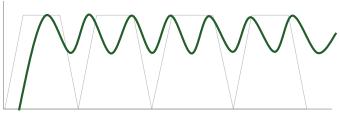
ALTO NÍVEL DE EFICIÊNCIA

PRODUÇÃO DE ÁGUAS QUENTES SANITÁRIAS

O calor proveniente do ambiente é a energia solar indirecta, armazenado na água, ar e solo. A Bomba de Calor vai retirar calor precisamente dessas fontes de calor para posteriormente utilizar na climatização do seu lar. As Bombas de Calor Ar/Água com tecnologia INVERTER de alta eficiência energética são uma solução moderna, eficiente e limpa que garantem o conforto do seu lar, respeitando sempre o meio ambiente.

É uma forma inteligente de utilizar os recursos da natureza de forma a melhorar a sua qualidade de vida. Ao adotar uma destas soluções estará a fazer um sério compromisso na questão da redução das emissões nocivas à nossa atmosfera, contribuindo assim para o equilíbrio natural do planeta. As Bombas de Calor Ar/Água com tecnologia INVERTER foram desenvolvidas para responder tanto às necessidades do uso doméstico como industrial, para soluções de climatização (aquecimento e arrefecimento) e Águas Quentes Sanitárias (AQS).

CONSUMOS DE ENERGIA PRIMÁRIA


Comparativamente com a caldeira a gasóleo, a caldeira a gás ou aquecedor elétrico, a Bomba de Calor proporciona qualidade de vida, com baixos custos de funcionamento, graças à sua alta eficiência.

■ Gás natural ■ Gasóleo de Aquec. ■ Gás Propano (GPL) ■ Bombas de Calor

GRÁFICO DE CONSUMO ENERGÉTICO

TECNOLOGIA DC INVERTER

A tecnologia DC INVERTER diferencia-se de qualquer outra tecnologia existente no mercado por possuir compressor com capacidade de variar a frequência de funcionamento atendendo exatamente às necessidades de conforto na climatização da habitação. Obtém-se assim uma maior poupança no consumo de energia.

INVERTER VS TRADICIONAL

Período de Operação

AQUAPURA INVERTER X30HT | X60HT | 75HT

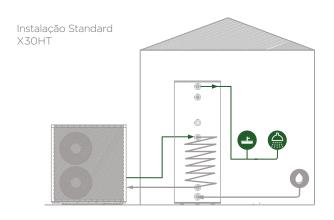
ÁGUAS QUENTES SANITÁRIAS E CLIMATIZAÇÃO

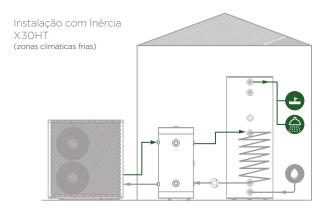
CARACTERISTICAS CHAVE

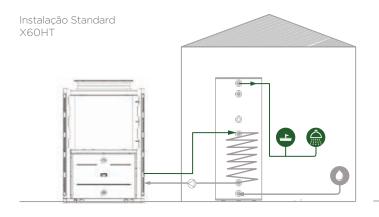
- Design compacto
- Controlo Touch
- Instalação simples "Plug and Use"
- Controlo via Smart APP
- Controlo centralizado RS485/ModBus
- Configuração de períodos de funcionamento
- Baixo nível de ruído
- Funcionamento até temperaturas exteriores de -25°C

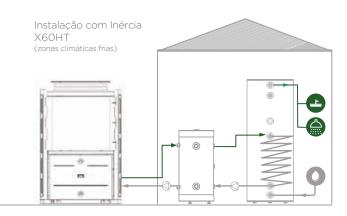
AQUAPURA X30HT

- Produção AQS até 75°C
- Bomba circuladora integrada
- Até 120kW de capacidade, conectando 4 unidades de 30kW/cada

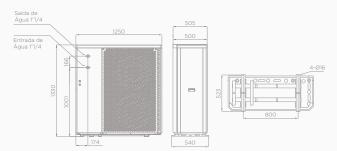

AQUAPURA X60HT

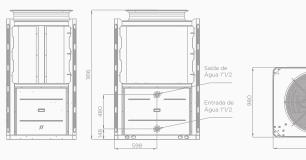

- Produção AQS até 75°C
- Até 240kW de capacidade, conectando 4 unidades de 60kW/cada


AQUAPURA X75HT

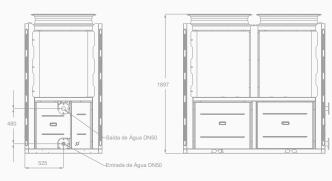

- Produção AQS até 75°C
- Até 300kW de capacidade, conectando 4 unidades de 75kW/cada

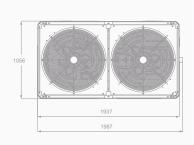
CENÁRIOS DE INSTALAÇÃO AQS





DADOS TÉCNICOS	UND.	INV. X30HT	INV. X60HT	INV. X75HT
Alimentação elétrica			380-415V/3N~/50Hz	
Refrigerante		R290	R290	R290
Carga refrigerante /CO ₂ equivalente	kg/Ton	1,8 / 0,0055	1,5 × 2 / 0,0092	2,4 × 2 / 0,01472
Capacidade de aquecimento (min/max)	kW	9,1 / 35,0	14,1 / 69,5	19,2 / 79,2
Capacidade de arrefecimento (min / max)	kW	6,1 / 22,5	9,31 / 48,2	12,6 / 54,3
Corrente máxima de funcionamento	А	20	30	45
Potência máxima de funcionamento	kW	13,1	19,7	29,5
Temperatura limite de operação	°C	-25 / 43	-25 / 43	-25 / 43
Resistência humidade		IPX4	IPX4	IPX4
Aquecimento - Temperatura do ar (DB/WB) 7°C/	Temperatura da ág	jua (entrada/saída) 30°C/3	55°C	
Capacidade de aquecimento nominal	kW	28,1	54,6	67,1
Consumo elétrico nominal	kW	6,1	12,18	14,84
COP		4,61	4,48	4,52
Arrefecimento - Temperatura do ar (DB/WB) 35°	C/ 24°C; Temperat	ura da água (entrada/saída	a): 12°C/ 7°C	
Capacidade de arrefecimento nominal	kW	19,5	43,2	52,1
Consumo elétrico nominal	kW	5,5	12,4	14,8
EER	kW	3,54	3,47	3,52
Especificações Técnicas				
Temperatura máxima aquecimento	°C	75	75	75
Temperatura minima arrefecimento	°C	7	7	7
Resistência elétrica de apoio	Un.	Não Integrado	Não Integrado	Não Integrado
Número de compressores	Un.	1	2	2
Tipologia de compressores		DC Inverter	DC Inverter	DC Inverter
Bomba de água	Un.	Integrado	Contactor integrado	Contactor integrado
Fluxo de água nominal (Δtmax. = 7°C)	m³/h	3,5	6,9	8,3
Queda da pressão interna circuito hidraulico	kPa	50	20	25
Número de ventiladores	Un.	2	1	2
Conexões hidráulicas (entrada/saída)	Inch	1" 1/4	1" 1/2	DN50
Pressão sonora (1m)	dB(A)	51	53	56
Potência sonora (1m)	dB	66	69	73
Peso líquido	kg	202	363	624
Dimensões líquidas (A x L x P)	mm	1330 x 1250 x 540	1816 x 1198 x 980	1897 x 1987 x 1056
Erp / Performance de acordo com a EN 14825 - C	Clima médio (+7ºC)			
Classe de eficiência energética (35°C)		A+++	A+++	A+++
SCOP/n	/ %	4,72/186	4,59 / 180	4,62 / 182
Classe de eficiência energética (55°C)		A++	A++	A++
SCOP/η	/ %	3,49/136	3,43 / 134	3,71 / 145


Equipamento: AQUAPURA INVERTER X30HT



Equipamento: AQUAPURA INVERTER X60HT

Equipamento: AQUAPURA INVERTER X75HT

O presente folheto foi criado apenas para informar e não constitui uma oferta contratual para a ENERGIE EST Lda.. A ENERGIE EST Lda. compilou o conteúdo deste folheto de acordo com o melhor dos seus conhecimentos. Não é dada qualquer garantia expressa ou implícita no que toca à totalidade, precisão, fiabilidade ou adequação para um determinado fim do seu conteúdo e dos produtos e serviços que apresenta. As especificações estão sujeitas a alterações sem aviso prévio. A ENERGIE EST Lda. rejeita explicitamente quaisquer danos diretos ou indiretos, no seu sentido mais amplo, resultantes ou relacionados com a utilização e/ou interpretação deste folheto. RIVO/2025

Zona Industrial de Laúndos Lote 48, 4570-311 Laúndos Póvoa de Varzim, Portugal EMAIL energie@energie.pt SITE www.energie.pt

Revendedor autorizado