

ENERGIE.PT

ÚLTIMA GENERACIÓN DE BOMBA DE CALOR AIRE / AGUA CON REFRIGERANTE NATURAL R290

Utiliza un refrigerante natural con un potencial de calentamiento

Posee un bajo nivel de ruido, casi imperceptible a pocos metros de distancia, cuando está en funcionamiento.

El equipo puede alcanzar lo que lo convierte en la solución

La clase de eficiencia A+++ otorgan al equipo una de las mayores eficiencias del mercado.

de gases fluorados, la instalación es 100% hidráulica.

Presenta un elevado rendimiento, independientemente de la aplicación:

El equipo cuenta con un

CONTROLADOR TÁCTIL E INTUITIVO PRODUCCIÓN DE ACS Y CALEFACCIÓN CENTRAL

PRINCIPIO DE FUNCIONAMIENTO

Existe un fluido refrigerante que es bombeado hacia un intercambiador de calor externo (evaporador). En este punto, el fluido absorbe energía del ambiente gracias al diferencial de temperatura existente en el exterior. Durante este proceso, el fluido cambia de estado y se transforma en vapor. El fluido gaseoso es entonces aspirado por la parte mecánica del sistema el compresor.

En el compresor, el fluido se comprime, lo que provoca un aumento de la presión y, en consecuencia, de su temperatura. A continuación, el fluido se desplaza hasta un segundo intercambiador de calor interno (condensador), donde transfiere el calor acumulado al sistema de calefacción de la vivienda. A medida que se enfría de forma natural, el fluido vuelve al estado líquido. Por último, la presión del fluido se reduce mediante un estrangulamiento en la válvula de expansión, y el ciclo vuelve a comenzar.

LAS BOMBAS DE CALOR INVERTER

DESTACAN POR SU ALTO RENDIMIENTO

Las Bombas de Calor están preparadas para calentar y enfriar, así como para calentar agua sanitaria. Estas soluciones destacan por su alta eficiencia energética, lo que las hace capaces de conseguir una calificación energética hasta A+++ para calefacción. También destacan por su capacidad de integración con otros sistemas de calefacción y su fácil insta lación.

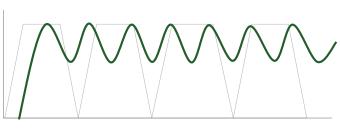
ALTO NIVEL DE EFICIENCIA

PRODUCCIÓN DE AGUA CALIENTE SANITARIA

El calor que proviene del ambiente es energía solar indirecta, almacenada en el agua, en el aire y en el suelo. La Bomba de Calor extrae la energía presente en estas fuentes de calor indirectas con precisión para su uso posterior en el aire acondicionado de su hogar. Las Lombas de Calor Aire/Agua con tecnología INVERTER de alta eficiencia energética son una solución moderna, eficiente y limpia que garantizan el máximo confort en su hogar, siempre respetando el medio ambiente.

Es una forma inteligente de utilizar los recursos de la naturaleza para mejorar su calidad de vida. Al adoptar una de estas soluciones, estará asumiendo un compromiso serio a la hora de reducir las emisiones nocivas a nuestra atmósfera, contribuyendo así a un mejor equilibrio en el planeta. Las Bombas de Calor Aire/Agua con tecnología INVERTER han sido desarrolladas para cubrir las necesidades tanto de uso doméstico como industrial, con soluciones de calefacción y Refrigeración y Agua Caliente Sanitaria (ACS)

CONSUMO DE ENERGIA PRIMARIA


Comparada con la caldera de gasoil, la caldera de gas o el calentador eléctrico, la Bomba de Calor proporciona calidad de vida, con bajos costes de operación, debido a su alta eficiencia.

■ Gas natural ■ Gasóleo de Calefacción ■ Gss Propano (GPL) ■ Bombas de Calor

GRÁFICO DE CONSUMO ENERGETICO

TECNOLOGÍA DC INVERTER

La tecnología DC INVERTER se diferencia de cualquier otra tecnología del mercado por contar con un compresor capaz de variar la frecuencia de funcionamiento, satisfaciendo así las necesidades de confort en la climatización del hogar. Con ello se consigue un mayor ahorro en el consumo energético.

INVERTER vs TRADICIONAL

Período de Operación

AQUAPURA INVERTER X30HT | X60HT | 75HT

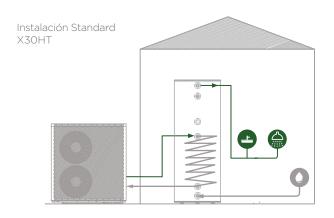
AGUA CALIENTE SANITARIA Y CLIMATIZACIÓN

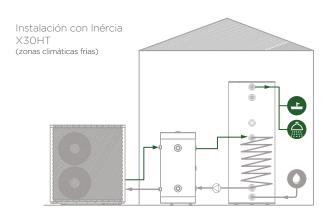
CARACTERÍSTICAS CLAVE

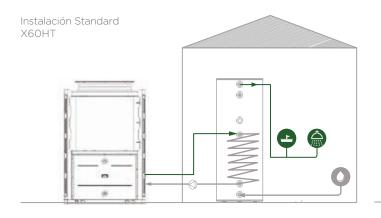
- Diseño compacto
- Control tactil
- · Instalación simple "plug & use"
- · Control mediante aplicación inteligente
- Control centralizado RS485/ModBus
- Configurar periodos de funcionamiento
- Bajo ruido de funcionamiento
- Funcionamiento con temperaturas exteriores bajas a -25°C

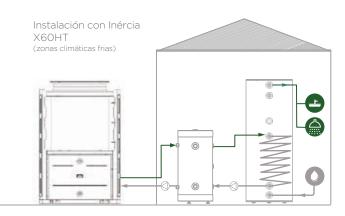
AQUAPURA X30HT

- Producción de ACS hasta 75°C
- Circulador integrado
- Hasta 120 kw de capacidad, conectando 4 unidades 30kw/cada una

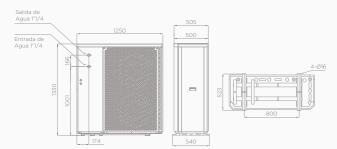

AQUAPURA X60HT

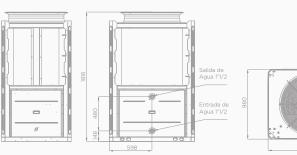

- Producción de ACS hasta 70°C
- Hasta 240 kw de capacidad, conectando 4 unidades 60kw/cada una


AQUAPURA X75HT

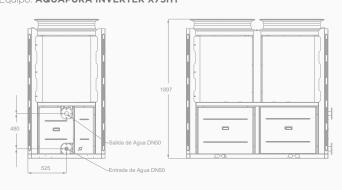

- Produción de AQS hasta 75°C
- Hasta 300kW de capacidad, conectando 4 unidades de 75kW/cada una

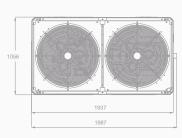
ESCENARIOS DE INSTALACIÓN ACS



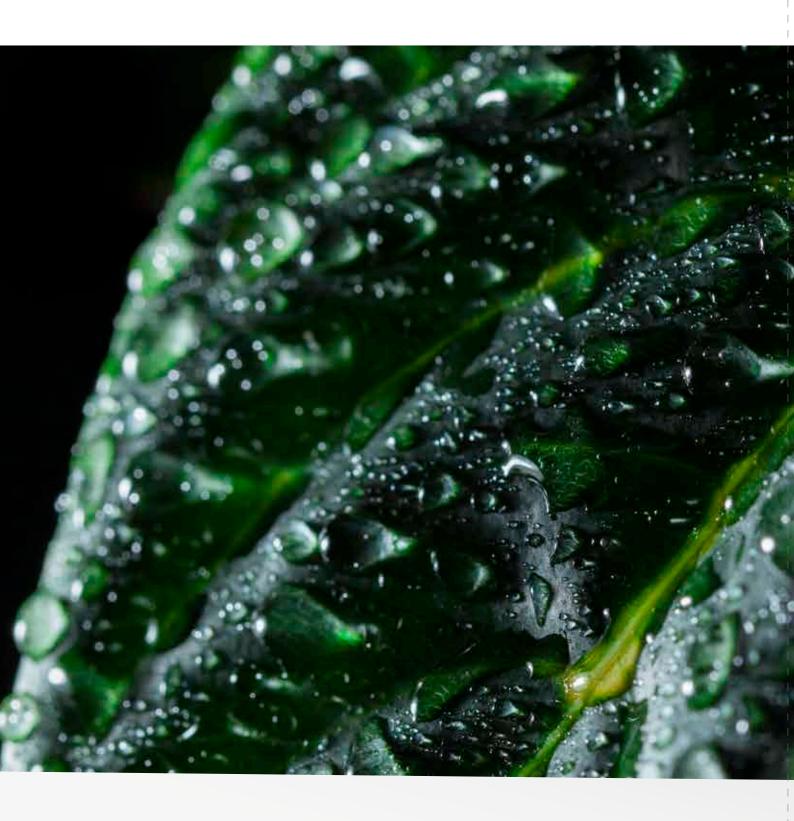


DADOS TÉCNICOS	UND.	INV. X30HT	INV. X60HT	INV. X75HT
Alimentación			380-415V/3N~/50Hz	
Refrigerante		R290	R290	R290
Carga de refrigerante /CO ₂ equivalente	kg/Ton	1,8 / 0,0055	1,5 x 2 / 0,0092	2,4 × 2 / 0,01472
Capacidad de calefacción (min/max)	kW	9,1 / 35,0	14,1 / 69,5	19,2 / 79,2
Capacidad de refrigeración (min / max)	kW	6,1 / 22,5	9,31 / 48,2	12,6 / 54,3
Corriente máxima de funcionamiento	А	20	30	45
Potencia máxima de funcionamiento	kW	13,1	19,7	29,5
Temperatura límite de operación	°C	-25 / 43	-25 / 43	-25 / 43
Resistencia a la humedad		IPX4	IPX4	IPX4
Calefacción - Temperatura del aire (DB/WB) 7°C/T	emperatura del a	gua (entrada/salida) 30°C,	/35°C	
Capacidad nominal de calefacción	kW	28,1	54,6	67,1
Consumo elétrico nominal	kW	6,1	12,18	14,84
COP		4,61	4,48	4,52
Refrigeración- Temperatura del aire (DB/WB) 35°C	:/ 24°C; Tempera	tura del agua (entrada/sali	da): 12°C/ 7°C	
Capacidad nominal de refrigeración	kW	19,5	43,2	52,1
Consumo elétrico nominal	kW	5,5	12,4	14,8
EER	kW	3,54	3,47	3,52
Especificações Técnicas				
Temperatura máxima de calefacción	°C	75	75	75
Temperatura minima refrigeración	°C	7	7	7
Resistencia elétrica de apoyo	Un.	Não Integrado	Não Integrado	Não Integrado
Número de compresores	Un.	1	2	2
Tipología de compresores		DC Inverter	DC Inverter	DC Inverter
Bomba de agua	Un.	Integrado	Contactor integrado	Contactor integrado
Caudal nominal de agua (∆tmax. = 7°C)	m³/h	3,5	6,9	8,3
Pérdida de presión interna del circuito hidráulico	kPa	50	20	25
Número de ventiladores	Un.	2	1	2
Conexiones hidráulicas (entrada/salida)	Inch	1" 1/4	1" 1/2	DN50
Presión sonora (1m)	dB(A)	51	53	56
Potencia sonora (1m)	dB	66	69	73
Peso neto	kg	202	363	624
Dimensiones netas (A x L x P)	mm	1330 x 1250 x 540	1816 × 1198 × 980	1897 x 1987 x 1056
Erp / Rendimiento según EN 14825 - Clima medio (+7ºC)			
Clase de eficiencia energética (35°C)		A+++	A+++	A+++
SCOP/n	/ %	4,72/186	4,59 / 180	4,62 / 182
Clase de eficiencia energética (55°C)		A++	A++	A++
SCOP/n	/ %	3,49/136	3,43 / 134	3,71 / 145


Equipo: AQUAPURA INVERTER X30HT



Equipo: AQUAPURA INVERTER X60HT



Equipo: AQUAPURA INVERTER X75HT

Este folleto ha sido creado únicamente con fines informativos y no constituye una oferta contractual para ENERGIE EST Lda. La empresa ENERGIE EST Lda. ha recopilado el contenido de este folleto con lo mejor de su conocimiento. No se otorga ninguna garantía, expresa o implícita, con respecto a la totalidad, precisión, fiabilidad o idoneidad para un propósito particular de su contenido y los productos y servicios que presenta. Las especificaciones están sujetas a cambios sin previo aviso. ENERGIE EST Lda. rechaza explícitamente cualquier daño directo o indirecto, en su sentido más amplio, resultante o relacionado con el uso y/o interpretación de este folleto. R1VO/2025

